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Performance and Productivity Challenge –
GSRB Smooth 

Section 1: Berkeley Lab Mission 
SUBTITLE HERE IF NECESSARY 

/* Laplacian 7-point Variable-Coefficient Stencil */ 
for (k=0; k<N; k++) 
    for (j=0; j<N; j++)  
       for (i=0; i<N; i++ 

 temp[k][j][i] = b * h2inv * ( 
   beta_i[k][j][i+1] * ( phi[k][j][i+1] – phi[k][j][i] ) 

                  -beta_i[k][j][i] * ( phi[k][j][i] – phi[k][j][i-1] ) 
 +beta_j[k][j+1][i] * ( phi[k][j+1][i] – phi[k][j][i] ) 
 -beta_j[k][j][i] * ( phi[k][j][i] – phi[k][j-1][i] ) 
 +beta_k[k+1][j][i] * ( phi[k+1][j][i] – phi[k][j][
 -beta_k[k][j][i] * ( phi[k][j][i] – phi[k-1][j][i] ) ); 

/* Helmholz */ 
for (k=0; k<N; k++) 
    for (j=0; j<N; j++)  
       for (i=0; i<N; i++) 

 temp[k][j][i] = a * alpha[k][j][i] * phi[k][j][i] –              
                                  temp[k][j][i]; 

/* Gauss-Seidel Red Black Update */ 
for (k=0; k<N; k++) 
    for (j=0; j<N; j++)  
       for (i=0; i<N; i++){ 

 if ((i+j+k+color)%2 == 0 ) 
 phi[k][j][i] = phi[k][j][i] – lambda[k][j][i] * 

             (temp[k][j][i] – rhs[k][j][i]);} 

Code A: miniGMG baseline smooth 
operator approximately 13 lines of code 

Code B: miniGMG optimized smooth 
operator approximately 170 lines of code 



GPU code for GSRB Smooth 

Code C: miniGMG optimized smooth operator for GPU, 308 lines of code for just 
kernel 



Section 1: Berkeley Lab Mission 
SUBTITLE HERE IF NECESSARY 

Background: Challenges 

•  Performance portability 
Across fundamentally different CPU and GPU architectures 

 

•  Programmer productivity 
High performance implementations will require low-level specification in 

standard MPI+OpenMP, CUDA 
 

•  Software maintainability and portability 
May require maintaining multiple implementation of same 

computation 



Section 1: Berkeley Lab Mission 
SUBTITLE HERE IF NECESSARY 

Possible ways to address the 
challenges 

•  Follow MPI and OpenMP standards 
Same code unlikely to perform well across CPU and GPU 

Low level specification may be required for high-performing OpenMP 
Vendor C and Fortran compilers not optimized for HPC workloads 

 

•  Some domain-specific framework strategies 
Libraries, C++ template expansion, standalone DSL 

Not composable with other optimizations 

 
 



Section 1: Berkeley Lab Mission 
SUBTITLE HERE IF NECESSARY 

Compiler Based Approach 

CHiLL is a source-to-source 
compiler framework with a script 

interface 

Autotuner 

CHiLL 

Code Variants 

Novel Domain-Specific 
optimization implemented in CHiLL 

•  Exploit existing compiler 
transformations to accomplish 

optimization goals 

•  Develop new domain-specific 
transformations and required 
analysis and code generation 

support 

•  Supports autotuning 



Section 1: Berkeley Lab Mission 
SUBTITLE HERE IF NECESSARY 

Compiler Based Approach 

Autotuner 

CHiLL 

Code Variants 

•  Composable transformation and 
code generation 

Leverage rich set of existing 
transformations and code generation 

capability 
 

Mathematically represented using 
polyhedral framework 

 
•  Extensible to new domain-

specific transformations and 
decision algorithms 

Compose with existing transformations 



Section 1: Berkeley Lab Mission 
SUBTITLE HERE IF NECESSARY 

Experience with CHiLL 
 
Input 

Existing 
Transformations 

Domain-specific 
transformations 

Autotuning 

Geometric 
Multigrid 

Sequential C 
computation 
(w/ MPI and 
OpenMP 
harness) 

Communication-
avoiding: fusion, tile, 
wavefront 
(skew&permute), 
OpenMP, CUDA 

Ghost zones, 
Partial sums 

Ghost zone 
depth, 
threading,  
strategy at 
each level of 
V-cycle 

Tensor 
Contraction 

Mathematical 
Formula 

Tile, permute, scalar 
replacement, unroll,  
CUDA 

Rewriting, Decision 
algorithm 

Loop order, 
CUDA 
threading 

Sparse 
Matrix 
Computation 

Sequential C 
with CSR 
matrix 

Tile, permute, skew, 
unroll,  reduction, 
scalar expansion, 
OpenMP, CUDA 

Generate 
inspectors, 
coalesce, make-
dense, compact, 
split, level sets 

Threading, 
matrix repr. 



Performance Bottlenecks 

Performance Limited by 
Memory Bandwidth! 
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Section 1: Berkeley Lab Mission 
SUBTITLE HERE IF NECESSARY 

Geometric Multigrid (GMG) 

GMG solves the linear 
system Ax=B, where A is  

a stencil applied on a 
grid 

MG is a hierarchical 
approach to solving the 

linear system Ax=B 

progress within V-cycle!

B o t t o m  S o l v e  

Smooth  

Residual 

Interpolation 

GMG 
V-cycle 

Restriction 

Smooth  



miniGMG Domain 256^3 

List of 64^3 Boxes 
Computed In Parallel (OMP) 

Smooth Dominates 
Runtime 

Domain 
decomposed to MPI 

processes (2) 

64 

32 

16 

8

4

48 iterations 
of Smooth 

4 iterations 
of smooth 

GMG 
V-cycle 

1
2 



Memory Bandwidth 
Bound 

Stencil/Smooth 

CA 

CA 

PS 

CA 

PS 

Communication-
Avoiding Optimizations 

Stencil Reordering: 
Partial Sums 

Compute Bound by High 
FLOP intensity and Poor 

Register Reuse 

Memory Bandwidth Bound 

Compiler Autotuning 
Matches Manual 

Tuning! 

Compiler Autotuning Beats Roofline*! 
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Smoother Performance (Fine Grid) 



 
for (k=0; k<N; k++) 
    for (j=0; j<N; j++)  
       for (i=0; i<N; i++) 

 /* statement S0 */ 
 temp[k][j][i] = b * h2inv * ( 
   beta_i[k][j][i+1] * ( phi[k][j][i+1] – phi[k][j][i] ) 

                  -beta_i[k][j][i] * ( phi[k][j][i] – phi[k][j][i-1] ) 
 +beta_j[k][j+1][i] * ( phi[k][j+1][i] – phi[k][j][i] ) 
 -beta_j[k][j][i] * ( phi[k][j][i] – phi[k][j-1][i] ) 
 +beta_k[k+1][j][i] * ( phi[k+1][j][i] – phi[k][j][i] ) 
 -beta_k[k][j][i] * ( phi[k][j][i] – phi[k-1][j][i] ) ); 

 
for (k=0; k<N; k++) 
    for (j=0; j<N; j++)  
       for (i=0; i<N; i++) 

 /* statement S1 */ 
 temp[k][j][i] = a * alpha[k][j][i] * phi[k][j][i] – temp[k][j][i]; 

 
for (k=0; k<N; k++) 
    for (j=0; j<N; j++)  
       for (i=0; i<N; i++){ 

 if ((i+j+k+color)%2 == 0 ) 
 /* statement S2 */ 
 phi[k][j][i] = phi[k][j][i] – lambda[k][j][i] *(temp[k][j][i] – rhs[k][j][i]);} 

7point VC 
stencil 

GSRB 
update 

S0 

S2 

S1 

Baseline GSRB Smooth 



Wavefront: Reducing Vertical Communication 

residual 

j

k

i

Wavefront fuses multiple grid 
sweeps reducing DRAM traffic 



Wavefront: Reducing Vertical Communication 

j
k

i

smooth (red) 

smooth (2nd red ) 
smooth (black) 

smooth (2nd  black) 

smooth (2nd red ) smooth (red) 

smooth (2nd red ) 
smooth (black) 

smooth (2nd  black) 

smooth (red) 

smooth (2nd red ) 
smooth (black) 

smooth (2nd  black) 

smooth (red) 

smooth (2nd red ) 
smooth (black) 

smooth (2nd  black) 

Wavefront = Loop Skew + Loop Permute 
We tune to find the ghost zone depth and wavefront depth! 



OpenMP Code Generation: Nested Parallelism 

Thread 0 Thread 1 Thread 2 Thread 3 

residual 

Wavefront has a larger working set 
Thread blocking to manage working set 

j

k

i



known (d = 4) #d sets ghost zone 
original() 
skew ([0,1,2], 2, [2,1]) 
permute ([2,1,3,4]) 
tile(s0,3,TJ,2,counted) 
gen_omp_parallel_region (locks, y) 

Autotuner 

CHiLL	
script1	

CHiLL	
script
2	

CHiLL	
script
3	

smooth
1.c	

Sets ghost zone depth 

Create a wavefront 

Generate parallel code 

For each level of the V-cycle, our search 
space is: 
 
•  Ghost zone depth ‘d’ {1,2,4,5} 
•  Fused Code or Wavefront variant 
•  Thread decomposition <x, y>, where x*y 

= #cores/chip 

CHiLL 

smooth
2.c	

smooth
3.c	

Experimental Methodology 



Performance of GSRB Smooth 
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for finer boxes; manually tuned code 

used intra-box threading  
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CUDA-CHiLL  
LL Lua/Python Interface 

CUDA-CHiLL 

CUDA-CHiLL is a thin layer built on 
top of CHiLL to generate CUDA 

code 

Deconstructs (tiles) a loop nest, and 
assigns loops to threads and blocks 

CHiLL 



Parallelization via Loop Tiling  

for(box = 0; box <= 63; box++) { 
  for(k = 1; k <= 64; k++) { 
    for(jj = 0; jj <= 3; jj++) { 
      for(j = 0; j <= 15; j++) {  
        for(ii = 0; ii <= 1; ii++) { 
          for(i = intMod(-j-k-color-1,2); i <= 31; i += 2) { 
             S0();  
             S1(); 
             S2();   }}}}}}    

for(box=0; box<64; box++){ 
 for(k=1; k<=64; k++){ 
   for(j=1; j<=64; j++){ 
     for(i=1; i<=64; i++){ 
       if(( i+ j + k + (color) ) % 2 == 1 ) {

 S0();  
 S1(); 
 S2();}}}}    

Input GSRB smooth  

Tiled loop nest with loops marked 
for blocks/threads 

mark as block dim z (BZ=64)   

mark as block dim y (BY=4)   

mark as block dim x (BX=2)   

mark as thread dim x (TX=32)   

mark as thread dim y 
(TY=16)   

BZ is fixed to 64 (number of  boxes) 

Tune to find best value of TX, TY 
(dimensions of 2D block) 

BX=64(box size)/TX, BY=64(box size)/TY    



CUDA-CHiLL  

/* gsrb.lua, variable coefficient GSRB, 643 box size */ 
init("gsrb_mod.cu", "gsrb",0,0) 
dofile("cudaize.lua”) # custom commands in lua 
 
# set up parallel decomposition, adjust via 
autotuning 
TI=32 
TJ=4 
TK=64 
TZ=64 
 
tile_by_index(0, {"box","k","j", "i"},{TZ,TK, TJ, TI},
{l1_control="bb", l2_control="kk", l3_control="jj", 
l4_control="ii"},{"bb","box","kk","k","jj","j","ii","i"}) 
 
cudaize(0, "kernel_GPU",
{_temp=N*N*N*N,_beta_i=N*N*N*N, 
_phi=N*N*N*N},{block={"ii","jj","box"}, 
thread={"i","j"}},{}) 



Performance on K20c 
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Higher-Order Stencils 
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High-Order Multigrid in miniGMG 

7pt (2nd order) 
13pt (4th order) 
27pt (6th order) 
125pt (10th order) 

Higher-order stencil promise huge reduction in data 
movement, but maybe bottlenecked by floating-

point pressure and poor register reuse 



Higher-Order Stencils 

25 

Higher-order stencil promise huge reduction in data 
movement, but maybe bottlenecked by floating-

point pressure and poor register reuse 
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Partial Sums 

for (j=0; j<N; j++)  
       for (i=0; i<N; i++){ 

  out[k][j][i] = w1* 
  (in[j-1][i   ] + in[j+1][i]   
  +in[j  ][i-1] + in[j   ][i+1] )  
  + w2 *(in[j-1][i-1] + in[j+1][i-1]   
  +in[j-1][i+1] + in[j+1][i+1] )  

                + w3* in[j  ][i ]; 
  } 

i

j

2D 9-point CC stencil 

Right (leading) edge of points from the input 
grid is reused in the next two iterations of the 

inner-loop 

The right edge acts as the 
center and left edge for the 

next iterations 



Partial Sums 

Exploiting symmetry reduces flops significantly for 27, 125-pt stencils 

For 3D stencils we pick the leading plane 

For 125-pt stencil, 124 adds went down to 38 adds (over 3x reduction) 



Smooth Performance 
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Smoother Performance (Fine Grid) 

+Fusion & Partial Sums 

+Fusion 

Baseline 

Roofline Memory Bound 

Partial sums takes the 
performance of the 

smoother to near the 
roofline bound 

Naively one may conclude 
reaching the bound is the 
upper end of performance 

Achieving memory 
bound implies we can 

now apply 
communication-avoiding 

optimizations! 



Smooth Performance 
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Smoother Performance (Fine Grid) 

All Optimizations 

+Fusion & Wavefront 

+Fusion & Partial Sums 

+Fusion 

Baseline 

Roofline Memory Bound 

 Transformation must work with other CA optimizations! 



Partial Sums – CHiLL Script 

/* jacobi_box_4_64.py, 27-pt stencil, 643 box size */ 
from chill import * 
#select which computation to optimize 
source('jacobi_box_4_64.c') 
procedure('smooth_box_4_64') 
loop(0) 
original() # fuse wherever possible 
#create a parallel wavefront 
skew([0,1,2,3,4,5],2,[2,1]) 
permute([2,1,3,4]) 
#partial sum for high order stencils and fuse result 
distribute([0,1,2,3,4,5],2) 
stencil_temp(0)  
stencil_temp(5) 
fuse([2,3,4,5,6,7,8,9],1) 
fuse([2,3,4,5,6,7,8,9],2) 
fuse([2,3,4,5,6,7,8,9],3) 
fuse([2,3,4,5,6,7,8,9],4) 



Summary and Conclusions 

•  Compiler technology can be leveraged for automated 
architecture-specific optimization from high-level 

specification for several motifs 

•  Compiler technology allows composing a sequence of 
transformations, and mixing known and novel domain-

specific optimizations 

•  Performance rivaling manually-tuned code and 
sometimes better 



Extra Slides 

32 Footer 



 Arithmetic Intensity (AI) of Stencil Computation 
for (k=0; k<N; k++) 
 for (j=0; j<N; j++) 
  for (i=0; i<N; i++){ 
 
   phi_out[k][j][i] =  w1 * phi_in[k][j][i] 

 + w2 * (phi_in[k+1][j][i] + phi_in[k-1][j][i] 
 + phi_in[k][j+1][i] + phi_in[k][j-1][i] 
 + phi_in[k][j+1][i] + phi_in[k][j-1][i]); 

} 

6 adds+2 muls = 8 
flops 

Read N3 Grid (phi_in) 

Write Allocate N3 Grid (phi_out) 

Write N3 Grid (phi_out) 

Floating Point Ops (flops)  

Data Moved (Bytes) 

8 * N3 

3 * N3  * 8 
= = 0.33 

AI 

Ideal cache behavior,  compulsory (cold) misses only  



Machine Balance (Edison) 

(very) Abstract Node 

COMPUTE 

CACHES 

DRAM (Memory) 

88 GB/s 

DP 460.8 
GFlop/s 

Floating Point Ops per second 

DRAM Memory Bandwidth 

460.8 

88 
= 

Machine Balance = 5.2 

To achieve peak 
performance, code 

needs to execute 5.2 
flops per byte!  



i

j

for (j=0; j<N; j++)  
       for (i=0; i<N; i++){ 

  out[k][j][i] = w1* 
  (in[j-1][i   ] + in[j+1][i]   
  +in[j  ][i-1] + in[j   ][i+1] )  
  + w2 *(in[j-1][i-1] + in[j+1][i-1]   
  +in[j-1][i+1] + in[j+1][i+1] )  

                + w3* in[j  ][i ]; 
  } 

2D 9-point CC stencil 
Right (leading) edge of points from the input grid is 
reused in the next two iterations of the inner-loop 

The right edge acts as the center 
and left edge for the next iterations 

Opportunity for Data and Computation 
Reuse 
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i
j

(j,i) (0,
0) 

(1,
1) 

array of 
coefficients 

Input grid 

B
0 

B
1 

B
2 

Partial Sum B0 

Partial Sum B1 

Partial Sum B2 

Right Edge for 
(j,i) 
Center for (j,i+1) 

Left Edge for (j,i+2) 

out [j][i] = R [i] + C [i] + L [i]  

Partial Sums are buffered in linear buffers R , C, 
L 

R[i] 
C[i+1] 

L[i+2] 

Buffering Partial Sums: Exploiting Reuse 
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(j,i) (0,0
) 

(1,1
) 

array of 
coefficients 

Input 
grid 

B0 B
1 

B
2 R[i] 

C[i+1] 
L[i+2] 

r1 = in[j][i+1]; 
r2 = in[j+1][i+1] + in[j-1][i
+1]; 

out[j][i] = L[i] + C[i]+ R[i]; 

R[i]     = w1 * r1 + w2 * r2; 
C[i+1] = w3 * r1 + w1 * r2; 
L[i+2] = R[i]; 

for (j=0; j<N; j++)  
       for (i=0; i<N; i++){ 
 

  out[k][j][i] = w1* 
  (in[j-1][i   ] + in[j+1][i]   
  +in[j  ][i-1] + in[j   ][i+1] )  
  + w2 *(in[j-1][i-1] + in[j+1][i-1]   
  +in[j-1][i+1] + in[j+1][i+1] )  

                + w3* in[j  ][i ]; 
 

  } 

2D 9-point  
stencil 

loads the right 
edge of points 

factor the points 
multiplied by the 
same coefficient 

Factors are reused to 
compute partial sums 
saving flops (5 adds 

instead of 8) 

after compiler 
transformatio
n Due to symmetry of 

coefficients the loaded edge 
(plane) can be factored into 

sums 

Exploiting Symmetry to Reduce 
Computation 
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Exploiting Symmetry to Reduce 
Computation 

Exploiting symmetry reduces flops significantly for 27, 125-pt stencils 

For 3D stencils we pick the leading plane 

For 125-pt stencil, 124 adds went down to 38 adds (over 3x reduction) 
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miniGMG Domain 256^3 

List of 64^3 Boxes 
Computed In Parallel (OMP) 

Smooth Dominates 
Runtime 

Domain 
decomposed to MPI 

processes (2) 

64 

32 

16 

8

4

48 iterations 
of Smooth 

4 iterations 
of smooth 

GMG 
V-cycle 

3
9 


